An Integral Representation for Besov and Lipschitz Spaces

نویسنده

  • KEHE ZHU
چکیده

It is well known that functions in the analytic Besov space B1 on the unit disk D admits an integral representation f(z) = ∫ D z − w 1− zw dμ(w), where μ is a complex Borel measure with |μ|(D) < ∞. We generalize this result to all Besov spaces Bp with 0 < p ≤ 1 and all Lipschitz spaces Λt with t > 1. We also obtain a version for Bergman and Fock spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity for Multilinear Commutator of Littlewood-paley Operator on Besov Spaces

As the development of the singular integral operators, their commutators have been well studied (see [1, 2, 3, 14]). From [2, 3, 9, 13], we know that the commutators and multilinear operators generated by the singular integral operators and the Lipschitz functions are bounded on the Triebel-Lizorkin and Lebesgue spaces. The purpose of this paper is to introduce the multilinear commutator associ...

متن کامل

Weighted Lipschitz Continuity and Harmonic Bloch and Besov Spaces in the Real Unit Ball

The characterization by weighted Lipschitz continuity is given for the Bloch space on the unit ball of Rn. Similar results are obtained for little Bloch and Besov spaces.

متن کامل

Non-smooth atomic decompositions, traces on Lipschitz domains, and pointwise multipliers in function spaces

We provide non-smooth atomic decompositions for Besov spaces Bsp,q(R n), s > 0, 0 < p, q ≤ ∞, defined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ of bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions on the parameters p, q. We conclude with some more applications in terms of pointwise multipliers. Ma...

متن کامل

Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains

Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.

متن کامل

Besov Regularity for Elliptic Boundary Value Problems

This paper studies the regularity of solutions to boundary value problems for Laplace's equation on Lipschitz domains in R d and its relationship with adaptive and other nonlinear methods for approximating these solutions. The smoothness spaces which determine the eeciency of such nonlinear approximation in L p (() are the Besov spaces B (L (()), := (=d + 1=p) ?1. Thus, the regularity of the so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011